New JWST observations reveal black holes rapidly shut off star formation in massive galaxies
This research published in Nature is the first direct confirmation that supermassive black holes are capable of shutting down galaxies...
In summary
- New observations from the James Webb Space Telescope that suggest black holes rapidly shut off star-formation in massive galaxies by explosively removing large amounts of gas
- Swinburne was part of the international team found that more than 90 per cent of the galactic wind is made of neutral gas
- This work is the first direct confirmation that supermassive black holes are capable of shutting down galaxies
New research published in Nature showcases new observations from the James Webb Space Telescope (JWST) that suggest black holes rapidly shut off star-formation in massive galaxies by explosively removing large amounts of gas.
The international team found that more than 90 per cent of the galactic wind is made of neutral gas, and therefore was virtually invisible in previous studies. This work is the first direct confirmation that supermassive black holes are capable of shutting down galaxies.
The difference between this new study and previous works is found in the type of gas observed: until now it was only possible to detect ionised gas, which is warm; while the JWST was able to also detect neutral gas, which is cold.
Dr Rebecca Davies from Swinburne University of Technology’s Centre for Astrophysics and Supercomputing led the Australian team behind this discovery and helped to find the powerful black-hole driven outflow in a distant massive galaxy with a very low level of star-formation.
“The outflow is removing gas fasting than gas is being converted into stars, indicating that the outflow is likely to have a very significant impact on the evolution of the galaxy. Our findings provide new evidence to indicate that black-hole driven outflows are able to rapidly shut-off or ‘quench’ star-formation in massive galaxies.”
When star formation is quenched, it means that a galaxy has stopped forming stars. It represents the transformation between a galaxy that is actively forming stars, allowing it to grow and change, and a galaxy that is 'dead' and static. Quenching is therefore a fundamental process in the life cycle of galaxies. However, astronomers still don't understand in detail what leads galaxies to stop forming stars.
Alongside internationally recognised researchers, particularly lead author Sirio Belli from the University of Bologna, Dr Davies studied a galaxy that is located at an enormous distance from Earth whose light took more than ten billion years to reach us.
Active galactic nuclei (AGN) - supermassive black holes consuming large amounts of gas - can drive outflows from galaxies. The most powerful AGN drive very massive outflows that could possibly remove all of the gas from their host galaxies in a relatively 'short' amount of time and cause star-formation to cease.
“The JWST made it possible for us to observe the cooler, neutral gas phase of normal AGN-driven outflows in distant galaxies. In the galaxy studied, we found that the outflow rate in the neutral phase was ~100 times larger than the outflow rate in the ionized phase, therefore revealing a lot of outflowing mass that was previously invisible.”
Dr Davies says the JWST can be used to detect a much larger fraction of the outflows, whereas previous ionized gas observations were only able to detect about one per cent.
“Before the JWST, we were only scraping the tip of the iceberg when it comes to the outflowing mass.”
The team are excited for what they might discover as they analyse more galaxies in the future.
-
Media Enquiries
Related articles
-
- Astronomy
- Education
- Science
- University
Swinburne’s Professor Matthew Bailes honoured with 2024 Prime Minister’s Prize for Science
Swinburne’s Professor Matthew Bailes has been awarded the 2024 Prime Minister’s Prize for Science for his pioneering work in astrophysics, particularly his discovery of fast radio bursts (FRBs).
Wednesday 09 October 2024 -
- Astronomy
- Science
Swinburne-led fungi experiment blasts off to the International Space Station
An experiment developed by Swinburne has been launched into space, containing three types of fungi: Lion’s Mane, Turkey’s Tail, and Cordyceps.Monday 05 August 2024 -
- Astronomy
High school students work with Swinburne astronomers on the future of space
Swinburne’s Youth Space Innovation Challenge has inspired over 330 Australian teenagers to pursue a career in STEM.
Friday 26 July 2024 -
- Astronomy
- Science
Swinburne appoints new Director of Innovative Planet Research Institute
Leading geodesy expert, Professor Allison Kealy, has been appointed as the inaugural Director of Swinburne University's Innovative Planet Research Institute.
Monday 22 April 2024 -
- Astronomy
- University
OzGrav 2.0: A ‘new era of astrophysics’ launched at Swinburne
The next phase in the world-leading ARC Centre of Excellence for Gravitational Wave Discovery, dubbed 'OzGrav 2.0', launched this week at Swinburne University of Technology.
Wednesday 17 April 2024